COT 6405 Introduction to Theory of Algorithms

Topic 14. Graph Algorithms

Elementary Graph Algorithms

- How to represent a graph?
 - Adjacency lists
 - Adjacency matrix
- How to search a graph?
 - Breadth-first search
 - Depth-first search

Graph Variations

- Variations:
 - A connected graph has a path from every vertex to every other
 - In an undirected graph:
 - edge (u,v) = edge (v,u)
 - No self-loops
 - In a directed graph:
 - Edge (u,v) goes from vertex u to vertex v, notated $u \rightarrow v$

Graph Variations

- More variations:
 - A weighted graph associates weights with either the edges or the vertices
 - E.g., a road map: edges weighted w/ distance
 - A multigraph allows multiple edges between the same vertices
 - E.g., the call graph in a program (a function can get called from multiple points in another function)

Graph G = (V, E)

A graph G = (V, E)

-V = set of vertices, E = set of edges

We will typically express running times in terms of |E| and |V| (often dropping the ||'s)
 If |E| ≈ |V|², the graph is dense

– If $|E| \approx |V|$, the graph is sparse

- If you know you are dealing with dense or sparse graphs, we different data structures
 - Dense graph \rightarrow adjacency matrix
 - Sparse graph ightarrow adjacency lists

22.1 Representing Graphs

- Assume V = {1, 2, ..., *n*}
- An adjacency matrix represents the graph as a *n* x *n* matrix A:
 - $\begin{array}{ll} A[i, j] &= 1 \text{ if edge } (i, j) \in E & (\text{or weight of edge}) \\ &= 0 \text{ if edge } (i, j) \notin E \end{array}$

• Example:

Α	1	2	3	4
1				
2				
3			??	
4				

• Example:

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

- How much storage does the adjacency matrix require?
- A: O(V²)
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits
 - Undirected graph \rightarrow matrix is symmetric
 - No self-loops \rightarrow don't need diagonal

- The adjacency matrix is a dense representation
 - Usually too much storage for large graphs
 - But efficient for small graphs
- Most large interesting graphs are sparse
 - E.g., planar graphs, in which no edges cross, have
 |E| = O(|V|) by Euler's formula
 - For this reason the adjacency list is often a more appropriate representation

Graphs: Adjacency List

- For each vertex v ∈ V, store a list of vertices adjacent to v
- The same example:
 - Adj[1] = {2, 3}
 - $Adj[2] = {3}$
 - Adj[3] = {}
 - $Adj[4] = {3}$

Undirected

(b)

• Directed Graph

Graphs: Adjacency List

- How much storage is required?
 - The degree of a vertex v = # incident edges
 - Two edges are called incident, if they share a vertex
 - Directed graphs have in-degree, out-degree
 - For directed graphs, # of items in adjacency lists is
 Σ out-degree(v) = |E|
 takes Θ(V + E) storage
 - For undirected graphs, # items in adjacency lists is Σ degree(v) = 2 |E| also Θ (V + E) storage
- So: Adjacency lists take O(V+E) storage

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: may build a forest if a graph is not connected

Breadth-First Search (BFS)

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- We associate vertices with "colors" to guide the algorithm
 - White vertices have not been discovered
 - All vertices start out white
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\};
                            // Q is a queue; initialize to s
    while (Q not empty) {
         u = Dequeue(Q);
         for each v \in G.adj[u] {
              if (v.color == WHITE)
                  v.color = GREY;
                  v.d = u.d + 1; What does v.d represent?
                                      What does v.p represent?
                  \mathbf{v}.\mathbf{p} = \mathbf{u};
                  Enqueue (Q, v);
         }
         u.color = BLACK;
     }
```

BFS: Initialization all nodes WHITE

Breadth-First Search: enqueue s

dequeue s; s is done; enqueue w and r

dequeue w, enqueue t and x

dequeue r, enqueue v

dequeue t, enqueue u

dequeue x, no enqueue

dequeue v, no enqueue

dequeue u, no enqueue

dequeue y, no enqueue

Q: Ø

BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\};
    while (Q not empty) {
        u = Dequeue(Q);
        for each v \in G.adj[u] {
             if (v.color == WHITE)
                 v.color = GREY;
                 v.d = u.d + 1;
                 v.p = u;
                 Enqueue (Q, v);
         }
                               What will be the running time?
        u.color = BLACK;
```

}

Time analysis

- The total running time of BFS is O(V + E)
- Proof:
 - Each vertex is dequeued at most once. Thus, total time devoted to queue operations is O(V).
 - For each vertex, the corresponding adjacency list is scanned at most once. Since the sum of the lengths of all the adjacency lists is $\Theta(E)$, the total time spent in scanning adjacency lists is O(E).
 - Thus, the total running time is O(V+E)

BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\};
    while (Q not empty) {
         u = Dequeue(Q);
         for each v \in G.adj[u] {
             if (v.color == WHITE)
                  v.color = GREY;
                  v.d = u.d + 1; What will be the storage cost
                                   in addition to storing the graph?
                  v.p = u;
                  Enqueue (Q, v);
                                     Total space used: O(V)
         }
         u.color = BLACK;
```

}

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
 - Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
 - Thus, we can use BFS to calculate a shortest path from one vertex to another in O(V+E) time

Depth-First Search

- Depth-first search is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex v that still has unexplored edges
 - Timestamp to help us remember who is "new"
 - When all of v's edges have been explored, backtrack to the vertex from which v was discovered

Depth-First Search: The Code

```
DFS(G)
 for each vertex u \in G.V
    u.color = WHITE
    u.\pi = NIL
 time = 0
 for each vertex u \in G.V
   if (u.color == WHITE)
      DFS_Visit(G, u)
```

```
DFS_Visit(G, u)
```

```
time = time + 1
u.d = time
u.color = GREY
for each v \in G.Adj[u]
 if (v.color == WHITE)
    v.\pi = u
    DFS_Visit(G, v)
u.color = BLACK
time = time + 1
u.f = time
```

Variables

- $u.\pi$ stores the predecessor of vertex u
- The first timestamp *u.d* records when *u* is first discovered (and grayed)
- The second timestamp *u.f* records when the search finishes examining *u*'s adjacency list (and blackens *v*).
- These timestamps are used in many graph algorithms and are generally helpful in reasoning about the behavior of depth-first search

DFS Example: time = 0

DFS Example: time = 1

GREEDY: Always to go with white nodes if possible

No where to go

GREEDY: Always to go with white nodes if possible **Based on timestamp**, 2 is the newest at this moment

No where to go

DFS Example: time = 7 and 8

Depth-First Search: running time

- Running time: O(|V|²) because call DFS_Visit on each vertex, and the loop over Adj[] can run as many as |V| times.
- BUT, there is actually a tighter bound.

DFS: running time (cont'd)

- How many times will DFS_Visit() actually be called?
 - The loops on lines 1–3 and lines 5–7 of DFS take time Θ(V), exclusive of the time to execute the calls to DFS-VISIT.
 - DFS-VISIT is called exactly once for each vertex v
 - During an execution of DFS-VISIT(v), the loop on lines 4–7 is executed |Adj[v]| times.
 - $-\sum_{v\in V}|Adj[v]|=\Theta(E)$
 - Total running time is $\Theta(V + E)$

DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: Edge (u, v) is a tree edge if v was first
 discovered by exploring edge (u, v)

DFS Example: Tree edges

Tree edges

DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new vertex
 - Back edge: from descendent to ancestor

Tree edges Back edges

DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Not a tree edge, though

DFS Example: Forward edges

Tree edges Back edges Forward edges

DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Cross edge: between subtrees

Tree edges Back edges Forward edges Cross edges

DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new vertex
 - Back edge: from a descendent to an ancestor
 - Forward edge: from an ancestor to a descendent
 - Cross edge: between a tree or subtrees
- Note: tree & back edges are important
 - most algorithms don't distinguish forward & cross

Directed Acyclic Graphs

• A directed acyclic graph (DAG) is a directed graph with no directed cycles:

DFS and DAGs

- A directed graph G is acyclic i.f.f. a DFS of G yields no back edges
 - If G is acyclic: no back edges
 - If G has a cycle, there must exist a back edge
- How would you modify the DFS code to detect cycles?
 - Detect back edges
 - edge (u, v) is a back edge if and only if d[v] < d[u] <</p>
 f[u] < f[v]</p>
 - u is the descendent
 - v is the ancestor

Run DFS to find whether a graph has a cycle

```
DFS (G)
   for each vertex u \in G.V
      u.color = WHITE
      u.\pi = NIL
   }
   time = 0
   for each vertex u \in G.V
   {
      if (u.color == WHITE)
          DFS Visit(G, u)
```

```
DFS Visit(G, u)
  time = time + 1
  u.d = time
  u.color = GREY
  for each v \in G.Adj[u]
    ł
       if (v.color == WHITE)
           \mathbf{v}.\boldsymbol{\pi} = \mathbf{u}
           DFS Visit(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```

DFS and Cycles

- What will be the running time?
- A: O(V+E)
- We can actually determine if cycles exist in O(V) time:
 - In an undirected acyclic tree, $|E| \le |V| 1$
 - So, count the number of edges:
 - if ever see |V| distinct edges, we must have seen a back edge along the way