COT 6405 Introduction to Theory of Algorithms

Topic 14. Graph Algorithms

Elementary Graph Algorithms

- How to represent a graph?
- Adjacency lists
- Adjacency matrix
- How to search a graph?
- Breadth-first search
- Depth-first search

Graph Variations

- Variations:
- A connected graph has a path from every vertex to every other
- In an undirected_graph:
- edge (u, v) = edge (v, u)
- No self-loops
- In a directed graph:
- Edge (u, v) goes from vertex u to vertex v, notated $u \rightarrow v$

Graph Variations

- More variations:
- A weighted graph associates weights with either the edges or the vertices
- E.g., a road map: edges weighted $w /$ distance
- A multigraph allows multiple edges between the same vertices
- E.g., the call graph in a program (a function can get called from multiple points in another function)

Graph G = (V, E)

- A graph G = (V, E)
$-\mathrm{V}=$ set of vertices, $\mathrm{E}=$ set of edges
- We will typically express running times in terms of $|\mathrm{E}|$ and $|\mathrm{V}|$ (often dropping the $|\mid ' s)$
- If $|E| \approx|V|^{2}$, the graph is dense
- If $|\mathrm{E}| \approx|\mathrm{V}|$, the graph is sparse
- If you know you are dealing with dense or sparse graphs, we different data structures
- Dense graph \rightarrow adjacency matrix
- Sparse graph \rightarrow adjacency lists

22.1 Representing Graphs

- Assume $V=\{1,2, \ldots, n\}$
- An adjacency matrix represents the graph as a $n \times n$ matrix A:

$$
\begin{aligned}
-\mathrm{A}[i, j] & =1 \text { if edge }(i, j) \in \mathrm{E} \quad \text { (or weight of edge) } \\
& =0 \text { if edge }(i, j) \notin \mathrm{E}
\end{aligned}
$$

Graphs: Adjacency Matrix

- Example:

A	1	2	3	4
1				
2				
3			$? ?$	
4				

Graphs: Adjacency Matrix

- Example:

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Graphs: Adjacency Matrix

- How much storage does the adjacency matrix require?
- A: O(V2)
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits
- Undirected graph \rightarrow matrix is symmetric
- No self-loops \rightarrow don't need diagonal

Graphs: Adjacency Matrix

- The adjacency matrix is a dense representation
- Usually too much storage for large graphs
- But efficient for small graphs

- Most large interesting graphs are sparse
- E.g., planar graphs, in which no edges cross, have $|E|=O(|V|)$ by Euler's formula
- For this reason the adjacency list is often a more appropriate representation

Graphs: Adjacency List

- For each vertex $v \in \mathrm{~V}$, store a list of vertices adjacent to v
- The same example:
$-\operatorname{Adj}[1]=\{2,3\}$
$-\operatorname{Adj}[2]=\{3\}$
$-\operatorname{Adj}[3]=\{ \}$
$-\operatorname{Adj}[4]=\{3\}$

- Undirected

(a)

(b)
- Directed Graph

(a)

(b)

Graphs: Adjacency List

- How much storage is required?
- The degree of a vertex $v=$ \# incident edges
- Two edges are called incident, if they share a vertex
- Directed graphs have in-degree, out-degree
- For directed graphs, \# of items in adjacency lists is
Σ out-degree $(v)=|E|$
takes $\Theta(V+E)$ storage
- For undirected graphs, \# items in adjacency lists is
Σ degree(v) $=2|E|$
also $\Theta(V+E)$ storage
- So: Adjacency lists take $\mathrm{O}(\mathrm{V}+\mathrm{E})$ storage

Graph Searching

- Given: a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
- Pick a vertex as the root
- Choose certain edges to produce a tree
- Note: may build a forest if a graph is not connected

Breadth-First Search (BFS)

- "Explore" a graph, turning it into a tree
- One vertex at a time
- Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
- Pick a source vertex to be the root
- Find ("discover") its children, then their children, etc.

Breadth-First Search

- We associate vertices with "colors" to guide the algorithm
- White vertices have not been discovered
- All vertices start out white
- Grey vertices are discovered but not fully explored
- They may be adjacent to white vertices
- Black vertices are discovered and fully explored
- They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS (G, s) {
    initialize vertices;
    Q = {s}; // Q is a queue; initialize to s
    while (Q not empty) {
    u = Dequeue (Q);
    for each v \in G.adj[u] {
        if (v.color == WHITE)
            v.color = GREY;
            v.d = u.d + 1; What does v.d represent?
            v.p = u;
                            What does v.p represent?
                            Enqueue (Q, v) ;
    }
    u.color = BLACK;
}

\section*{BFS: Initialization all nodes WHITE}


\section*{Breadth-First Search: enqueue s}

dequeue \(s\); \(s\) is done; enqueue w and \(r\)


\section*{dequeue \(w\), enqueue \(t\) and \(x\)}


Q: \begin{tabular}{|l|l|l|}
\hline \(\mathbf{r}\) & \(\mathbf{t}\) & \(\mathbf{x}\) \\
\hline
\end{tabular}

\section*{dequeue \(r\), enqueue \(v\)}


Q: \begin{tabular}{|l|l|l|}
\hline \(\mathbf{t}\) & \(\mathbf{x}\) & \(\mathbf{v}\) \\
\hline
\end{tabular}

\section*{dequeue \(t\), enqueue \(u\)}


\section*{dequeue \(x\), no enqueue}


Q: \begin{tabular}{|l|l|l|}
\hline \(\mathbf{v}\) & \(\mathbf{u}\) & \(\mathbf{y}\) \\
\hline
\end{tabular}

\section*{dequeue v, no enqueue}


\section*{dequeue \(u\), no enqueue}


\section*{dequeue \(y\), no enqueue}


Q: Ø

\section*{BFS: The Code Again}
```

BFS(G, s) {
initialize vertices;
Q = {s};
while (Q not empty) {
u = Dequeue (Q);
for each v \in G.adj[u] {
if (v.color == WHITE)
v.color = GREY;
v.d = u.d + 1;
v.p = u;
Enqueue(Q, v);
}
u.color = BLACK;
What will be the running time?
}

Time analysis

- The total running time of BFS is $O(V+E)$
- Proof:
- Each vertex is dequeued at most once. Thus, total time devoted to queue operations is $O(V)$.
- For each vertex, the corresponding adjacency list is scanned at most once. Since the sum of the lengths of all the adjacency lists is $\Theta(E)$, the total time spent in scanning adjacency lists is $O(E)$.
- Thus, the total running time is $\mathrm{O}(\mathrm{V}+\mathrm{E})$

BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {
        u = Dequeue(Q);
        for each v \in G.adj[u] {
            if (v.color == WHITE)
            v.color = GREY;
            v.d = u.d + 1; What will be the storage cost
            v.p = u;
                            Enqueue(Q, v);
    }
    u.color = BLACK;
    }

\section*{Breadth-First Search: Properties}
- BFS calculates the shortest-path distance to the source node
- Shortest-path distance \(\delta(\mathrm{s}, \mathrm{v})=\) minimum number of edges from \(s\) to \(v\), or \(\infty\) if \(v\) not reachable from \(s\)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
- Thus, we can use BFS to calculate a shortest path from one vertex to another in \(\mathrm{O}(\mathrm{V}+\mathrm{E})\) time

\section*{Depth-First Search}
- Depth-first search is another strategy for exploring a graph
- Explore "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex \(v\) that still has unexplored edges
- Timestamp to help us remember who is "new"
- When all of v's edges have been explored, backtrack to the vertex from which \(v\) was discovered

\section*{Depth-First Search: The Code}

```

DFS_Visit(G,u)
{
time = time + 1
u.d = time
u.color = GREY
for each v }\in\mathrm{ G.Adj[u]
{
if (v.color == WHITE)
v. }\pi=\textrm{u
DFS_Visit(G, v)
}
u.color = BLACK
time = time + 1
u.f = time

```

\section*{Variables}
- \(u . \pi\) stores the predecessor of vertex \(u\)
- The first timestamp \(u\).d records when \(u\) is first discovered (and grayed)
- The second timestamp u.f records when the search finishes examining \(u\) 's adjacency list (and blackens \(v\) ).
- These timestamps are used in many graph algorithms and are generally helpful in reasoning about the behavior of depth-first search

\section*{DFS Example: time \(=0\)}

\section*{source}


\section*{DFS Example: time = 1}

\section*{source}


\section*{DFS Example: time = 2}
source


\section*{DFS Example: time = 3}

\section*{source}


GREEDY: Always to go with white nodes if possible

\section*{DFS Example: time = 4}
source


No where to go

\section*{DFS Example: time = 5}

\section*{source}


GREEDY: Always to go with white nodes if possible Based on timestamp, 2 is the newest at this moment

\section*{DFS Example: time = 6}
source


No where to go

\section*{DFS Example: time \(=7\) and 8}

\section*{source}


\section*{DFS Example}
source


\section*{DFS Example: time = 9}
source


\section*{DFS Example: time \(=10\)}

\section*{source}


\section*{DFS Example: time = 11}
source


\section*{DFS Example: time \(=12\)}
source


\section*{DFS Example}
source

\section*{Another}


\section*{DFS Example}
source


\section*{DFS Example}
source


\section*{DFS Example}
source


\section*{Depth-First Search: running time}
- Running time: \(\mathrm{O}\left(|V|^{2}\right)\) because call DFS_Visit on each vertex, and the loop over Adj[] can run as many as \(|\mathrm{V}|\) times.
- BUT, there is actually a tighter bound.

\section*{DFS: running time (cont'd)}
- How many times will DFS_Visit() actually be called?
- The loops on lines 1-3 and lines 5-7 of DFS take time \(\Theta(\mathrm{V})\), exclusive of the time to execute the calls to DFS-VISIT.
- DFS-VISIT is called exactly once for each vertex \(v\)
- During an execution of DFS-VISIT(v), the loop on lines \(4-7\) is executed \(|\operatorname{Adj}[v]|\) times.
\(-\sum_{v \in V}|\operatorname{Adj}[v]|=\Theta(E)\)
- Total running time is \(\Theta(V+E)\)

\section*{DFS: Different Types of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: Edge \((u, v)\) is a tree edge if \(v\) was first discovered by exploring edge \((u, v)\)

\section*{DFS Example: Tree edges}

\section*{source}


Tree edges

\section*{DFS: Different Types of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new vertex
- Back edge: from descendent to ancestor

\section*{DFS Example}

\section*{source}


Tree edges Back edges

\section*{DFS: Different Types of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new vertex
- Back edge: from descendent to ancestor
- Forward edge: from ancestor to descendent
- Not a tree edge, though

\section*{DFS Example: Forward edges}

\section*{source}


Tree edges Back edges Forward edges

\section*{DFS: Different Types of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new vertex
- Back edge: from descendent to ancestor
- Forward edge: from ancestor to descendent
- Cross edge: between subtrees

\section*{DFS Example}

\section*{source}


Tree edges Back edges Forward edges Cross edges

\section*{DFS: Different Types of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new vertex
- Back edge: from a descendent to an ancestor
- Forward edge: from an ancestor to a descendent
- Cross edge: between a tree or subtrees
- Note: tree \& back edges are important
- most algorithms don't distinguish forward \& cross

\section*{Directed Acyclic Graphs}
- A directed acyclic graph (DAG) is a directed graph with no directed cycles:


\section*{DFS and DAGs}
- A directed graph G is acyclic i.f.f. a DFS of \(G\) yields no back edges
- If G is acyclic: no back edges
- If \(G\) has a cycle, there must exist a back edge
- How would you modify the DFS code to detect cycles?
- Detect back edges
- edge \((u, v)\) is a back edge if and only if \(d[v]<d[u]<\) \(f[u]<f[v]\)
- \(u\) is the descendent
- \(v\) is the ancestor

\section*{Run DFS to find whether a graph has a cycle}
```

DFS (G)
for each vertex u \in G.V
{
u.color = WHITE
}
time = 0
for each vertex u \in G.V
{
if (u.color == WHITE)
DFS_Visit(G, u)
}
}

```
i
    time \(=\) time +1
    u.d = time
    u.color = GREY
    for each \(v \in G . A d j[u]\)
    \{
        if (v.color == WHITE)
        \(\mathrm{v} \cdot \pi=\mathrm{u}\)
        DFS_Visit(G, v)
    \}
    u.color \(=\) BLACK
    time \(=\) time +1
    u.f = time

\section*{DFS and Cycles}
- What will be the running time?
- \(\mathrm{A}: ~ \mathrm{O}(\mathrm{V}+\mathrm{E})\)
- We can actually determine if cycles exist in \(\mathrm{O}(\mathrm{V})\) time:
- In an undirected acyclic tree, \(|\mathrm{E}| \leq|\mathrm{V}|-1\)
- So, count the number of edges:
- if ever see |V| distinct edges, we must have seen a back edge along the way```

